
Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 2 – Page 1 of 7

Lab 2 – Build a copy pipeline
In this lab you will create a pipeline to ingest data from a website and into your data lake. You’ll be

copying data from Microsoft’s "AdventureWorks" sample OLTP database, which is available from the

company’s "sql-server-samples" repository on GitHub. The pipeline you build will copy a file directly

from the website and into your data lake.

Lab 2.1 – Create source linked service
The linked service you created in Lab 1 defines a connection to your data lake. To copy data from an

external web resource, a similar connection is required – in this section you’ll create an HTTP linked

service that enables access to a file on GitHub.

1. As in Lab 1.4, navigate to the Manage hub, open the “Linked services” page and click “+

New”. This time, choose a linked service of type “HTTP” and click “Continue”.

2. Configure the linked service like this:

• Give it a Name

• Set its Base URL to “https://raw.githubusercontent.com/microsoft/sql-server-

samples/master/samples/databases/adventure-works/oltp-install-

script/Product.csv”. This is the URL of a raw text file containing Adventure Works

product data.

• Set Authentication type to “Anonymous”

• Click “Create”

https://raw.githubusercontent.com/microsoft/sql-server-samples/master/samples/databases/adventure-works/oltp-install-script/Product.csv
https://raw.githubusercontent.com/microsoft/sql-server-samples/master/samples/databases/adventure-works/oltp-install-script/Product.csv
https://raw.githubusercontent.com/microsoft/sql-server-samples/master/samples/databases/adventure-works/oltp-install-script/Product.csv

Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 2 – Page 2 of 7

Lab 2.2 – Create integration datasets
In ADF, the linked services you created in Lab 1.4 and Lab 2.1 represent connections to external

systems, but not to the data objects inside those systems. Data stored by those systems must be

represented using integration datasets.

In this section you will create an integration dataset representing the source (GitHub) and sink (data

lake) files that your pipeline will copy data between.

1. Navigate to the Author hub in ADF Studio using the “Author” button (pencil icon) in the

leftmost toolbar. Hover over the number to the right of “Datasets” in the “Factory

Resources” menu to reveal an ellipsis button. Click the button to expand the “Dataset

Actions” menu.

2. From the “Dataset Actions” menu, choose “New dataset”, then search for and select the

“HTTP” data store in the “New dataset” flyout. Click “Continue”.

Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 2 – Page 3 of 7

3. Choose the “Binary” format from the “Select format” page. The format is not exclusive to

unstructured file types – it means simply that at this point we are specifying no structural

information about the file at all.

4. Name the dataset “HTTP_BIN_AWProduct”, then select the linked service you created in the

previous lab. Leave “Relative URL” blank, then click “OK”.

5. Dataset changes are not automatically committed to the factory’s GitHub repository. Click

“Save” below the dataset tab or “Save all” in the ADF Studio header bar to commit your

changes. Unsaved changes are discarded when you quit ADF Studio.

Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 2 – Page 4 of 7

6. Repeat steps 2-5 to create a second integration dataset, this time to represent the sink file

to be written into the data lake.

• Choose the “Azure Data Lake Storage Gen2” data store.

• Choose the “Binary” file format.

• Name the dataset “ADLS_BIN_AWProduct”, and select the data lake linked service

you created in Lab 1.

• Specify the location (file path) into which you want the file to be copied. Use the

“lakeroot” file system (container) created in Lab 1, the “raw” directory, and set “File

name” to “Product.csv” (consistent with the source URL used in the Lab 2.1).

Click OK, then remember to save (commit) your changes to GitHub.

Lab 2.3 – Create copy pipeline
In this section you will create a pipeline that copies data from the source dataset and into the sink

dataset, both of which you created in Lab 2.2.

1. Open the “Pipelines Actions” menu in the same way you accessed the “Dataset Actions”

menu, by clicking the ellipsis to the right of “Pipelines” in the “Factory Resources” menu.

2. Select “New pipeline”. A new pipeline opens in the tabbed pane to the right, and the

pipeline’s “Properties” flyout appears. Name the pipeline appropriately using the

“Properties” flyout, then click the “Properties” toggle button to dismiss the flyout.

Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 2 – Page 5 of 7

3. If you need more space, collapse the “Factory Resources” sidebar using the left chevron

button. Drag a “Copy” activity from the “Move & transform” section of the activity toolbox

and drop it onto the pipeline canvas. Give the activity a meaningful name.

4. Select the “Source” tab below the canvas and select the “HTTP_BIN_AWProduct” dataset

from the “Source dataset” dropdown.

5. Select the “Sink” tab and select the “ADLS_BIN_AWProduct” dataset from the “Sink dataset”

dropdown.

6. Finally, check your pipeline configuration by clicking the “Validate” button above the

pipeline canvas.

Lab 2.4 – Debug and test the pipeline
You can test your pipeline’s execution and outcome by running it in “Debug” mode in ADF Studio.

1. Click “Debug” above the pipeline canvas. The pipeline’s “Output” pane appears below the

canvas.

Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 2 – Page 6 of 7

2. The “Output” pane contains a row for each of the pipeline’s activity executions – in this case

just one, for the Copy data activity. The row shows the execution’s current status. While the

pipeline is running, you can get status updates using the “Refresh” button.

3. “Debug” runs your pipeline without publishing it to the data factory instance, but its effect is

just the same – it has the same external dependencies, so has real effects on external

resources. Open the “Raw” folder in the Azure portal and you will see the newly-copied file

“Products.csv”.

4. To inspect its contents, click the filename to open the “Blob” blade, then select the “Edit”

tab.

Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 2 – Page 7 of 7

Notice that although the file has a “.csv” extension, it is not comma-separated – fields in the

file are separated by tabs instead. This will be important in Lab 4.

Recap
In Lab 2 you:

• created a linked service to connect to an external web source (GitHub)

• created datasets to represent data files in the source and in the data lake

• created a pipeline to copy the Products.csv file from GitHub and into your data lake, using

the new datasets and linked services

• ran the pipeline in debug mode and inspected its results.

