
Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 3 – Page 1 of 6

Lab 3 – Create a reusable pipeline
The pipeline you built in Lab 2 copied a file from a website – GitHub – into your data lake. In this lab

you will use linked service and dataset parameters in combination with ADF pipeline expressions to

make a reusable pipeline – a single pipeline that can perform this task for any of the

AdventureWorks files stored in GitHub.

Lab 3.1 – Create a generic HTTP linked service & dataset
In Lab 2.1 you created a linked service containing the full URL path to the AdventureWorks

“Products.csv” file. We’ll improve upon that by creating a linked service and dataset that can refer to

any of the AdventureWorks sample files on GitHub.

1. Navigate to the Manage hub, open the “Linked services” page and click “+ New”. Choose a

linked service of type “HTTP” and click “Continue”.

2. Configure the linked service like this:

• Give it the Name “HTTP_AWGitHub”.

• Set its Base URL to “https://raw.githubusercontent.com/microsoft/sql-server-

samples/master/samples/databases/adventure-works/oltp-install-script/”. This is

the first part of the URL you used in Lab 2.1 – the folder containing AdventureWorks

data files.

• Set Authentication type to “Anonymous”.

• Click “Create”.

3. Navigate to the Author hub and use the “Dataset Actions” menu to create a new integration

dataset.

• Choose the “HTTP” data store.

• Choose the “Binary” file format.

• Name the dataset “HTTP_BIN_AdventureWorks”, and select the new

“HTTP_AWGitHub” linked service.

• Leave “Relative URL” blank again – we will come back to it in a moment – and click

OK.

• Save the new dataset.

4. To reuse the dataset, we need to be able to pass in different relative URL values at runtime,

depending which file is required. We can do this using a dataset parameter. Use the

“Parameters” configuration tab to create a new String parameter called “Entity”.

https://raw.githubusercontent.com/microsoft/sql-server-samples/master/samples/databases/adventure-works/oltp-install-script/
https://raw.githubusercontent.com/microsoft/sql-server-samples/master/samples/databases/adventure-works/oltp-install-script/

Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 3 – Page 2 of 6

5. To use the runtime parameter value, the relative URL will require a pipeline expression to

reference the parameter. Furthermore, as every file in the collection has a “.csv” extension,

we can include that in the expression (and save users of the pipeline from having to specify

the same extension repeatedly).

Enter an expression to achieve this in the “Connection” tab’s “Relative URL” field. A possible

implementation is @{dataset().Entity}.csv (using string interpolation to avoid a less

readable @concat function).

6. Use the “Save all” button to commit your changes to GitHub.

Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 3 – Page 3 of 6

Lab 3.2 – Create a generic data lake dataset
By parameterising the HTTP dataset you created in Lab 3.1, you enabled it to accept different file

names at runtime. We need now to perform the equivalent task for the data lake dataset.

1. Create a new dataset, this time by cloning the “ADLS_BIN_AWProduct” dataset created in

Lab 2. Locate the dataset in the “Factory Resources” menu, then use the “Clone” option on

its “Actions” menu.

2. Rename the cloned dataset “ADLS_BIN_AdventureWorks”

3. Create a dataset parameter, called “Entity” and of type String.

4. Replace “Product.csv” in the “File name” section of the “Connection” tab’s “File path” with

an expression. In the screenshot we have changed the extension of the data lake file to

“tsv”, indicating more clearly that the file is tab-separated.

5. Commit your changes to GitHub.

Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 3 – Page 4 of 6

Lab 3.3 – Create a generic pipeline
A pipeline using the two datasets you have created must provide runtime values for their

parameters. Instead of hard-coding them into the pipeline definition, use pipeline parameters to

make the pipeline generic as well.

1. Create a new ADF pipeline called “CopyAWEntity”

2. On the pipeline’s “Parameters” tab, create a String parameter called “Entity”.

3. Drag a “Copy” activity from the “Move & transform” section of the activity toolbox and drop

it onto the pipeline canvas. Give the activity a meaningful name.

4. On the activity’s “Source” tab, choose dataset “HTTP_BIN_AdventureWorks”. A field in

which to specify the dataset’s parameter value will appear – supply an expression to pass in

the pipeline parameter value.

The expression in the screenshot passes the pipeline’s parameter value without modification

– the file extension will be appended by the “HTTP_BIN_AdventureWorks” dataset.

5. Configure the activity’s “Sink” tab similarly, choosing dataset “ADLS_BIN_AdventureWorks”

and passing the pipeline’s parameter value to the dataset.

6. Save your changes, then run the pipeline in “Debug” mode, specifying an appropriate

parameter value, e.g.:

• BillOfMaterials

• BusinessEntity

• ContactType

Verify that the expected filenames and contents appear in the data lake’s “Raw” folder.

Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 3 – Page 5 of 6

Lab 3.4 – Reuse the generic pipeline
Your generic pipeline can be used to extract any “.csv” file from the AdventureWorks sample data

folder on GitHub. In this lab you will automate the extraction of multiple files.

1. Create a new pipeline called “CopyAWEntities”.

2. The new pipeline will store a list of entities in an array variable, then use a ForEach activity

to iterate over the array. Use the pipeline’s “Variables” configuration tab to create an array

variable with the value ["Product","ProductSubcategory","ProductCategory"].

3. Drag a ForEach activity from the “Iteration & conditionals” section of the Activities toolbox

and onto the pipeline canvas. Use its “Settings” tab to configure the “Items” collection – the

collection of items over which the activity will iterate.

Azure Data Integration Pipelines

Azure Data Integration Pipelines – Lab 3 – Page 6 of 6

4. Click the “pencil” icon on the ForEach activity (indicated in the screenshot) to open the sub-

pipeline to be executed at each iteration. Drag an “Execute pipeline” activity onto the sub-

pipeline canvas and name it appropriately.

5. Configure the activity to call the generic “CopyAWEntity” pipeline. A value is required for

that pipeline’s “Entity” parameter – use the @item() function to refer to the array element

being considered during a given iteration.

6. Save your changes and run the pipeline. When you run the pipeline using “Debug”, ADF

Studio warns you that the ForEach activity will handle its input collection sequentially. This is

a debug-specific feature – default ForEach behaviour in published pipelines is to handle

array elements in parallel. This makes the activity a powerful way to execute multiple data

processing activities simultaneously.

7. When the pipeline’s execution has successfully completed, inspect the “lakeroot”

container’s “Raw” folder to verify that it now contains the three Product.csv,

ProductSubcategory.csv and ProductCategory.csv files.

Recap
In Lab 3 you:

• created reusable datasets to represent different source and data lake files generically

• created a generic pipeline using those generic datasets

• reused the generic pipeline in a ForEach activity, enabling a single pipeline to download

three source files using only two activities.

